Machine-guided dual-objective protein engineering for deimmunization and therapeutic functions.

阅读:2
作者:Wolfsberg Eric, Paul Jean-Sebastien, Tycko Josh, Chen Binbin, Bassik Michael C, Bintu Lacramioara, Alizadeh Ash A, Gao Xiaojing J
Cell and gene therapies often express nonhuman proteins, which carry a risk of anti-therapy immunogenicity. An emerging consensus is to instead use modified human protein domains, but these domains include nonhuman peptides around mutated residues and at interdomain junctions, which may also be immunogenic. We present a modular workflow to optimize protein function and minimize immunogenicity by using existing machine learning models that predict protein function and peptide-major histocompatibility complex (MHC) presentation. We first applied this workflow to existing transcriptional activation and RNA-binding domains by removing potentially immunogenic MHC II epitopes. We then generated small-molecule-controllable transcription factors with human-derived DNA-binding domains targeting non-genomic DNA sequences. Finally, we established a workflow for creating deimmunized zinc-finger arrays to target arbitrary DNA sequences and upregulated two therapeutically relevant genes, utrophin (UTRN) and sodium voltage-gated channel alpha subunit 1 (SCN1A), using it. Our modular workflow offers a way to potentially make cell and gene therapies safer and more efficacious using state-of-the-art algorithms.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。