cIAP2-mediated IGF2BP2 ubiquitination and degradation regulate cardiomyocyte apoptosis via stabilizing m(6)A-modified BAX mRNA in myocardial infarction.

cIAP2 介导的 IGF2BP2 泛素化和降解通过稳定心肌梗死中的 m(6)A 修饰的 BAX mRNA 来调节心肌细胞凋亡

阅读:11
作者:Wang Cong, Liu Jijia, Hou Xuyang, Guan Qing, Zhou Huiling, Luo Yong, Jin Wancun, Bai Fan, Liu Lijun, Wang Jian, Xie Li, Li Feng, Liu Haidan
Ubiquitin-proteasome system (UPS) is a major degradation system that maintains cardiac proteostasis, thus displaying an indispensable role in coronary artery disease, including myocardial infarction (MI). However, the function and mechanism of ubiquitin ligases in MI remain unclarified. In this study, we reported that cIAP2 protein, an E3 ubiquitin ligase, was downregulated in MI tissue and oxygen-glucose deprivation (OGD)-treated cardiomyocytes (CMs). cIAP2 depletion promoted OGD-induced injury and apoptosis in CMs, while adeno-associated virus (AAV) serotype 9 mediated-cardiac specific cIAP2 overexpression inhibited myocardial injury in MI mice. Moreover, we identified IGF2BP2 as a novel substrate of cIAP2. Mechanistically, cIAP2 downregulation inhibited IGF2BP2 ubiquitination and proteasomal degradation, leading to the upregulation of IGF2BP2 protein, which subsequently enhanced OGD-induced injury and apoptosis by stabilizing BAX mRNA in an m(6)A-dependent manner. In addition, our results showed that CWI1-2, a small molecule inhibitor of IGF2BP2, alleviated myocardial injury in MI mice by inhibiting cardiomyocyte apoptosis. Altogether, our results indicate that cIAP2 is a ubiquitin E3 ligase of IGF2BP2. The downregulation of cIAP2 protein aggravates OGD-induced apoptosis and oxidative damage in CMs via IGF2BP2/BAX axis. These findings provide a potential therapeutic target for reducing cardiomyocyte loss in MI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。