Mitochondrial endosymbiosis was a pivotal event in eukaryotic evolution, requiring core proteins to adapt to function both within the mitochondria and in the host cell. Here, we systematically profile the localization of protein isoforms generated by alternate start codon selection during translation. We identify hundreds of pairs of differentially-localized protein isoforms, many of which affect mitochondrial targeting and are essential for mitochondrial function. The emergence of dual-localized mitochondrial protein isoforms coincides with mitochondrial acquisition during early eukaryotic evolution. We further reveal that eukaryotes use diverse mechanisms-such as leaky ribosome scanning, alternative transcription, and paralog duplication-to maintain the production of dual-localized isoforms. Finally, we identify multiple isoforms that are specifically dysregulated by rare disease patient mutations and demonstrate how these mutations can help explain unique clinical presentations. Together, our findings illuminate the evolutionary and pathological relevance of alternative translation initiation, offering new insights into the molecular underpinnings of mitochondrial biology.
Alternative start codon selection shapes mitochondrial function during evolution, homeostasis, and disease.
替代起始密码子的选择在进化、体内平衡和疾病过程中塑造线粒体功能
阅读:6
作者:Ly Jimmy, Tao Yi Fei, Di Bernardo Matteo, Khalizeva Ekaterina, Giuliano Christopher J, Lourido Sebastian, Fleming Mark D, Cheeseman Iain M
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Mar 27 |
| doi: | 10.1101/2025.03.27.645657 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
