Human colonic organoids for understanding early events of familial adenomatous polyposis pathogenesis.

阅读:2
作者:Laborde Nolwenn, Barusseaud Alexandre, Quaranta Muriel, Rolland Corinne, Arrouy Amélie, Bonnet Delphine, Kirzin Sylvain, Sola-Tapias Nuria, Hamel Dimitri, Barange Karl, Duffas Jean-Pierre, Gratacap Marie-Pierre, Guillermet-Guibert Julie, Breton Anne, Vergnolle Nathalie, Alric Laurent, Ferrand Audrey, Barreau Frédérick, Racaud-Sultan Claire, Mas Emmanuel
Patients with familial adenomatous polyposis (FAP) harbor mutations in the APC gene and will develop adenoma and early colorectal cancer. There is no validated treatment, and animal models are not sufficient to study FAP. Our aim was to investigate the early events associated with FAP using the intestinal organoid model in a single-center study using biopsies from nonadenomatous and adenomatous colonic mucosa of FAP patients and from healthy controls (HCs). We analyzed intestinal stem cell (ISC) activity and regulation through organoid development and expression of mRNA and proteins, as well as within colonic crypts. We used several compounds to regulate the signaling pathways controlling ISCs, such as WNT, EGFR, PI3K-AKT, TGF-β, yes-associated protein (YAP), and protease-activated receptors. In addition to their high proliferative capacity, nonadenomatous and adenomatous organoids were characterized by cysts and cysts with buds, respectively, suggesting abnormal maturation. Adenomatous organoids were enriched in the stem cell marker LGR5 and dependent on EGF and TGF-β for their growth. Downstream of EGFR, AKT, β-catenin, and YAP were found to be activated in the adenomatous organoids. While the p110β isoform of PI3K was predominant in adenomatous organoids and essential for their growth, p110α was associated with the immature state of nonadenomatous organoids. We conclude that organoids offer a relevant model for studying FAP, and this work highlights abnormal behaviors of immature cells in both nonadenomatous and adenomatous mucosa of FAP patients, which could be targeted therapeutically. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。