Engineered Probiotic Saccharomyces boulardii Reduces Colitis-Associated Colorectal Cancer Burden in Mice.

工程化益生菌布拉氏酵母菌可降低小鼠结肠炎相关结直肠癌的负担

阅读:13
作者:Culpepper Tyler, Senthil Krithika, Vlcek Jessica, Hazelton Anthony, Heavey Mairead K, Sellers Rani S, Nguyen Juliane, Arthur Janelle C
BACKGROUND: Individuals with inflammatory bowel diseases experience an elevated risk of colorectal cancer driven by chronic inflammation. Current systemic immunosuppressive therapies often cause severe side effects. Live oral biotherapeutics are an emerging treatment modality that directly target the intestines. We have engineered a probiotic Saccharomyces boulardii strain that expresses targeting ligands to bind fibronectin on inflamed mucosa and secretes anti-tumor necrosis factor nanobodies locally to reduce inflammation. We previously demonstrated that engineering S. boulardii to bind fibronectin enhanced colonization and reduced inflammation in a DSS colitis model. AIMS: Here, we tested the anti-cancer potential of engineered S. boulardii using a well-established model of IBD-associated CRC, azoxymethane-treated interleukin 10-deficient (AOM/Il10(-/-)) mice. These mice develop inflammation and invasive tumors that model those found in inflammatory bowel disease. METHODS: Mice were orally administered engineered S. boulardii at two dosing frequencies, unmodified S. boulardii, or placebo throughout the 18-week model. Colons were harvested for gross, histological, and molecular evaluation for inflammation and tumorigenesis. RESULTS: Histological colon inflammation was reduced by twice weekly dosing of engineered and unmodified S. boulardii. Engineered S. boulardii reduced gross tumor number in a dose-dependent manner, with median tumor counts reduced from 7.5 to 2 per mouse (p < 0.0002 vs. placebo). Unmodified S. boulardii similarly reduced gross tumor number. Colonization studies revealed that engineered S. boulardii failed to colonize for greater time or density vs. unmodified S. boulardii. CONCLUSION: Together our data indicate that engineering S. boulardii does not reduce its ability to decrease inflammation-associated tumorigenesis, and that further host-binding target optimization is required to enhance colonization and anti-cancer effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。