PEGylation Effects on Amphiphilic Platinum(IV) Complexes: Influence on Uptake, Activation, and Cytotoxicity.

阅读:2
作者:Sharma Arpit, Al Amin Md, Kshetri Man B, Alqarni Suha, Jogadi Wjdan, Solmen Jordan, Lin Zexin, Akter Shirin, Zheng Yao-Rong
Background/Objectives: The utilization of amphiphilic Pt(IV) complexes as prodrugs offers a promising strategy to revolutionize Pt-based cancer therapy by enhancing drug delivery and activation. While PEGylation is widely used to optimize drug properties, its impact on the biological behavior of amphiphilic Pt(IV) complexes remains unclear. This study systematically investigates how the PEGylation of varying molecular weights influences their cytotoxicity, cellular uptake, and activation. Methods: Pt(IV) complexes were synthesized with PEG chains of different molecular weights using HATU-catalyzed amide bond formation and copper-free click chemistry. Their biological properties were assessed through cell-based analyses, focusing on cytotoxicity, cellular uptake, and activation by biological reductants. Results: Small PEG modifications retained the potent cytotoxicity of amphiphilic Pt(IV) prodrugs, whereas large PEG chains significantly reduced efficacy. The decrease in potency was linked to impaired cellular uptake and mitochondrial accumulation. Additionally, large PEG modifications slowed the reduction and activation of Pt(IV) prodrugs by biological reductants, further limiting their anticancer activities. Conclusions: These findings underscore the critical role of PEGylation in metallodrug design and provide key insights into optimizing PEGylation strategies for enhancing platinum-based cancer therapies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。