A scalable platform for EPSC-Induced MSC extracellular vesicles with therapeutic potential.

阅读:3
作者:Gong Shixin, Li Nan, Peng Qinqing, Wang Feng, Du Rulong, Zhang Boyang, Wang Jian, Han Le, Zhang Yu, Ning Zemin, Tan Shengjiang, Gu Yuchun, Wu Lida
BACKGROUND: Extracellular Vesicles (EVs) derived from mesenchymal stem cells (MSCs) have gained recognition as promising therapeutic and drug delivery agents in regenerative medicine. However, their clinical application is limited by donor variability, low scalability, and inconsistent therapeutic quality. To overcome these challenges, a robust and standardized production platform is urgently needed. METHODS: We developed a scalable biomanufacturing strategy by generating and expanding MSCs from extended pluripotent stem cells (EPSC) using a suspension bioreactor culture system. A fixed-bed bioreactor was integrated for automated, continuous expansion of iMSCs and downstream EV harvesting. EVs were isolated through a streamlined protocol and characterized for size, morphology, surface markers, and bioactivity. Therapeutic efficacy was assessed in a bleomycin-induced pulmonary fibrosis mouse model. RESULTS: iMSC-derived EVs (iMSC-EVs) exhibited comparable characteristics to primary MSC-EVs, including a size distribution of 70-80 nm, cup-shaped morphology, and expression of canonical EV markers (CD63, CD81, TSG101). iMSCs were expanded for up to 20 days in 3D culture, yielding > 5 × 10⁸ cells per batch using a suspension bioreactor culture system and producing ~ 1.2 × 10¹³ EV particles/day in a fixed-bed bioreactor. In vivo, iMSC-EVs significantly reduced Ashcroft fibrosis scores and bronchoalveolar lavage fluid protein levels in bleomycin-injured lungs, with therapeutic efficacy comparable to primary MSC-EVs. CONCLUSIONS: This study establishes a scalable and standardized platform for producing high-quality iMSC-EVs using bioreactor-based systems. Our approach addresses key limitations in traditional EV production and sets the stage for AI-integrated, fully automated, GMP-compliant manufacturing of therapeutic EVs suitable for clinical translation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。