Precise control of biological processes by the application of small molecules can increase the safety and efficiency of therapies. Adverse side effects of small molecule signals and/or immunogenicity of regulatory domains hinder their biomedical utility. Here, we designed small molecule-responsive switches, based on the conditional reassembly of human antibody variable fragments, called Fv-CID switches. The principle was validated using high-affinity antibodies against nicotine and β-estradiol to construct chemically responsive transcription factors. Further, we developed an Fv-CID switch responsive to bio-inert, clinically approved compound fluorescein, which was used to control the activity of chimeric antigen receptor (CAR) T cells and bispecific T cell engagers (BiTEs) in vivo. This study provides a framework to regulate the expression of endogenous genes, combine multiple chemical signals, and regulate T cell-based immunotherapy in an animal cancer model using a clinically approved small molecule regulator that could be customized for regulating therapeutic proteins or cells.
Ligand-induced assembly of antibody variable fragments for the chemical regulation of biological processes.
阅读:2
作者:Rihtar Erik, Fink Tina, Lebar Tina, LainÅ¡Äek DuÅ¡ko, Kolenc Živa, Polajnar Lucija Kadunc, Jerala Roman
期刊: | Cell Chemical Biology | 影响因子: | 7.200 |
时间: | 2025 | 起止号: | 2025 Mar 20; 32(3):474-485 |
doi: | 10.1016/j.chembiol.2025.01.007 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。