Ligand-induced assembly of antibody variable fragments for the chemical regulation of biological processes.

配体诱导抗体可变片段组装,用于生物过程的化学调控

阅读:14
作者:Rihtar Erik, Fink Tina, Lebar Tina, Lainšček DuÅ¡ko, Kolenc Živa, Polajnar Lucija Kadunc, Jerala Roman
Precise control of biological processes by the application of small molecules can increase the safety and efficiency of therapies. Adverse side effects of small molecule signals and/or immunogenicity of regulatory domains hinder their biomedical utility. Here, we designed small molecule-responsive switches, based on the conditional reassembly of human antibody variable fragments, called Fv-CID switches. The principle was validated using high-affinity antibodies against nicotine and β-estradiol to construct chemically responsive transcription factors. Further, we developed an Fv-CID switch responsive to bio-inert, clinically approved compound fluorescein, which was used to control the activity of chimeric antigen receptor (CAR) T cells and bispecific T cell engagers (BiTEs) in vivo. This study provides a framework to regulate the expression of endogenous genes, combine multiple chemical signals, and regulate T cell-based immunotherapy in an animal cancer model using a clinically approved small molecule regulator that could be customized for regulating therapeutic proteins or cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。