A modular and reconfigurable microfluidic device for culturing spheroids under continuous perfusion.

一种用于在连续灌注条件下培养球状体的模块化、可重构微流控装置

阅读:10
作者:Aljayyousi Hiba, Sahloul Sarah, Orozaliev Ajymurat, Baban Navajit, Van Anh-Duc, Al Nuairi Amani, John Pauline, Zam Azhar, Percipalle Piergiorgio, Song Yong-Ak
3D cell spheroids have become crucial in vitro models for biomedical research, yet maintaining their growth and viability remains challenging due to diffusion limitations. We developed a versatile microfluidic modular device with a reconfigurable channel design that is customizable by altering the channel configuration in the adhesive layer. The resealable adhesive layer also enables open access to the wells for loading cells, continuous perfusion after closing, and facile retrieval of spheroids for downstream analysis and imaging after culturing. We evaluated three channel configurations using Mouse Embryonic Fibroblasts (MEFs), human induced Pluripotent Stem Cells (hiPSCs), and MDA-MB-231 breast cancer cells. The device significantly improved spheroid growth in MEFs and hiPSCs, increasing up to 139.9% over controls in 14 days. In contrast, MDA-MB-231 spheroids exhibited slower growth, highlighting the need for balancing nutrient delivery with autocrine factor retention. Sphericity was maintained in MEF and MDA-MB-231 spheroids, while hiPSC spheroids experienced budding. In situ optical coherence tomography (OCT) provided noninvasive 3D viability assessments of the spheroids. Our findings demonstrate that this modular microfluidic device, combined with OCT analysis, offers a powerful platform for advancing spheroid culture techniques and opens up new opportunities in applications such as drug testing, studying spheroid-spheroid interactions, and collecting spheroid secretions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。