BACKGROUND: Exosome-based therapeutics have garnered significant attention for intracerebral hemorrhage (ICH) treatment due to their capacity to regulate metabolic dysregulation, restore cellular homeostasis, and modulate the injury microenvironment via bioactive cargoes such as microRNAs and proteins. However, rapid systemic clearance and enzymatic degradation critically limit their therapeutic efficacy. To address this challenge, we engineered a three-dimensional (3D) bioprinted scaffold capable of encapsulating and sustaining the release of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-exos). METHODS: Based on previous research [1-3], the scaffold was composed of a decellularized brain matrix (dECM), gelatin-methacryloyl (GelMA), and silk fibroin (SF) crosslinked with a photoinitiator. hUCMSC-exos were precisely incorporated via extrusion-based 3D bioprinting. Release kinetics were assessed via in vitro elution and in vivo imaging. An ICH rat model received stereotaxic implantation of the exosome-laden scaffold (dECM@exo). Neuroinflammatory markers (IL-6, TNF-α, IL-10) and apoptotic activity (JC-1, Annexin V/PI, TUNEL) were quantified. Neurological outcomes were longitudinally evaluated using the modified Longa scale, Bederson scoring, and sensorimotor tests (rotarod, forelimb placement) at 1, 4, 7 and 14 days post-ICH. RESULTS: dECM@exo demonstrated sustained exosome release over 14 days, significantly promoting neural tissue regeneration while attenuating perihematomal edema. Mechanistically, the scaffold modulated pathological MMP activity and inflammatory cytokine expression, thereby restoring extracellular matrix homeostasis and reducing neuronal apoptosis. CONCLUSIONS: The findings demonstrate that the 3D biological scaffold dECM@exo effectively maintains microenvironmental homeostasis in the early stages of ICH and improves outcomes associated with the condition. dECM@exo is poised to serve as a robust platform for drug delivery and biotherapy in ICH treatment, offering a viable alternative for managing this condition.
Effects of 3D-printed exosome-functionalized brain acellular matrix hydrogel on neuroinflammation in rats following cerebral hemorrhage.
阅读:2
作者:Zhang Aobo, Sun Boyu, Nan Chengrui, Cong Lulu, Zhao Zongmao, Liu Liqiang
期刊: | Stem Cell Research & Therapy | 影响因子: | 7.300 |
时间: | 2025 | 起止号: | 2025 Apr 20; 16(1):196 |
doi: | 10.1186/s13287-025-04332-3 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。