Excessive exercise elicits poly (ADP-ribose) Polymerase-1 activation and global protein PARylation driving muscle dysfunction and performance impairment.

阅读:4
作者:Crisol Barbara M, Rocha Matheus B, Franco Beatriz, Morelli Ana Paula, Katashima Carlos K, Junior Scylas J A, Carneiro Fernanda S, Braga Renata R, Brícola Rafael S, de Azambuja Graciana, Costa Raul Gobato, Esteves Andrea M, Mori Marcelo A, Oliveira Maria C G, Cintra Dennys E, Pauli José R, Larsen Filip J, da Silva Adelino S R, Ropelle Eduardo R
Excessive exercise combined with inadequate recovery time may trigger fatigue, performance impairment, and ultimately the overtraining syndrome. The intramyocellular mechanisms involved in the overtraining syndrome remain only partially known. Here, we combined multi-omics analyses from isogenic BXD mouse strains with a mouse model of overtraining and excessive exercise protocol in mice and humans to evaluate the molecular mechanism involved in the performance impairment induced by excessive exercise. We identified that BXD mouse strains with elevated levels of Parp1 gene expression in the skeletal muscle displayed features like overtraining syndrome and abnormal muscle genetic signature. High PARP1 protein content and aberrant PARylation of proteins were detected in the skeletal muscle of overtrained, but not in trained mice. Overtraining syndrome reduced mitochondrial function promoted by exercise training, induced muscle hyperalgesia, reduced muscle fiber size and promoted a similar gene signature of myopathy and atrophy models. Short periods of excessive exercise also increased PARylation in the skeletal muscle of mice and healthy subjects. The pharmacological inhibition of PARP1, using Olaparib, and genetic Parp1 ablation, preserved muscle fiber morphology and protected against physical performance impairment and other symptoms of the overtraining syndrome in mice. In conclusion, PARP1 excessive activation is related to muscle abnormalities led by long or short periods of excessive exercise, and here we suggest that PARP1 is a potential target in the treatment and prevention of overtraining syndrome.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。