Glutamate utilization fuels rapid production of mitochondrial ROS in dendritic cells and drives systemic inflammation during tularemia.

阅读:2
作者:Fabrik Ivo, Spidlova Petra, Prchal Lukas, Fabrikova Daniela, Viduka Ina, Marecic Valentina, Filimonenko Vlada, Sleha Radek, Vajrychova Marie, Kupcik Rudolf, Soukup Ondrej, Rousar Tomas, Härtlova Anetta, Santic Marina, Stulik Jiri
Dendritic cells (DCs) hijacked by intracellular bacteria contribute to pathogen dissemination and immunopathology. How bacteria achieve DC subversion remains largely unknown. Here, we describe the mechanism used by tularemia agent Francisella tularensis exploiting host mitochondrial anaplerosis. Shortly after internalization, Francisella associates with DC mitochondria, which leads to the rapid repurposing of their oxidative metabolism for production of mitochondrial reactive oxygen species (mtROS). Mitochondrial metabolic rewiring is orchestrated by the intramitochondrial signaling mediated by protein acetylation and involves switching to glutamate as the primary substrate for DC tricarboxylic acid cycle. Rather than killing the bacterium, glutamate-fueled mtROS production activates p38-dependent proinflammatory gene expression. Blocking of glutamate utilization prevents DC activation and bacterial dissemination and alleviates inflammation in vivo. Our findings underscore the importance of metabolic plasticity in antibacterial DC response and open up potential avenues for therapies targeting host metabolism.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。