A bi-variate framework to model microbiome resilience in healthy dogs.

构建健康犬肠道菌群恢复力的双变量模型框架

阅读:7
作者:Mainardi Fabio, Garcia-Garcera Marc, Nash Andrea K
INTRODUCTION: Ecological resilience is the capacity of an ecosystem to maintain its state and recover from disturbances. This concept can be applied to the gut microbiome as a marker of health. METHODS: Several metrics have been proposed to quantify microbiome resilience, based on the prior choice of some salient feature of the trajectories of microbiome change. We propose a data-driven approach based on compositional and functional data analysis to quantify microbiome resilience. We demonstrate the validity of our approach through applications to sled dogs undergoing three types of exercise: running on an exercise wheel, pulling an all-terrain vehicle, and pulling a sled. RESULTS: Microbiota composition was clearly impacted by each exercise type. Log-ratio analysis was utilized for dimensionality reduction and identified 33 variables (taxa) explaining 90% of the variance. Functional principal component analysis identified two scores (FPCA 1 and FPCA2) which explained 76% and 19% of the variability of the trajectories, respectively. More resilient trajectories corresponded to low values of FPCA1 and FPCA2 values close to zero. Levels of chemokines MCP-1 and KC-like, which increased significantly after exercise and returned to pre-exercise levels within 24 h, were significantly associated with FPCA scores as well. DISCUSSION: To our knowledge, this is the first study proposing a principled approach to quantify microbiome resilience in healthy dogs and associate it with immune response to exercise-related stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。