Tau plays an important role in modulating axonal microtubules in neurons, while intracellular tau aggregates are found in many neurodegenerative disorders. Tubulin binding sites are found in tau's proline-rich region (PRR), microtubule binding repeats (MTBRs), and pseudo-repeat (R'). Tau phosphorylation sites, which cluster with high frequency within the PRR, regulate tubulin interactions and correlates with disease. Here, we use fluorescence correlation spectroscopy and structural mass spectrometry techniques to characterize the impact of phosphomimic mutations in the PRR on tau function. We find that phosphomimics cumulatively diminish tubulin dimer binding and slow microtubule polymerization. Additionally, we map two â¼15 residue regions of the PRR as primary tubulin dimer binding sites and propose a model in which PRR enhances lateral interactions between tubulin dimers, complementing the longitudinal interactions observed for MTBR. Our study provides insight into the previously overlooked relevance of tau's PRR in functional interactions with tubulin dimers.
Structural insights into the role of the proline rich region in tau function.
阅读:3
作者:Acosta Karen, Brue Christopher R, Holubovska Polina, Kim Hee Jong, Mayne Leland, Murakami Kenji, Rhoades Elizabeth
| 期刊: | Structure | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Mar 6; 33(3):465-474 |
| doi: | 10.1016/j.str.2024.12.017 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
