Transposable elements can alter gene regulation in their host genome, either when they integrate into a genome, or when they accrue mutations after integration. However, the extent to which transposons can alter gene expression, as well as the necessary mutational steps, are not well characterized. Here we study the gene regulatory potential of the prominent IS3 family of transposable elements in E.coli. We started with 10 sequences from the ends of 5 IS3 sequences, created 18,537 random mutations in them, and measured their promoter activity using a massively parallel reporter assay. All 10 sequences could evolve de-novo promoter activity from single point mutations. De-novo promoters mostly emerge from existing proto-promoter sequences when mutations create new -10 boxes downstream of preexisting -35 boxes. The ends of IS3s harbor ~1.5 times as many such proto-promoter sequences than the E. coli genome. We also estimate that at least 26% of the 706 characterized IS3s already encode promoters. Our study shows that transposable elements can have a high latent cis-regulatory potential. Our observations can help to explain why mobile DNA may persist in prokaryotic genomes. They also underline the potential use of transposable elements as a substrate for evolving new gene expression.
The latent cis-regulatory potential of mobile DNA in Escherichia coli.
阅读:2
作者:Fuqua Timothy, Wagner Andreas
期刊: | Nature Communications | 影响因子: | 15.700 |
时间: | 2025 | 起止号: | 2025 May 21; 16(1):4740 |
doi: | 10.1038/s41467-025-60023-w |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。