This study was undertaken to examine the trade-off between the cost of thermoregulation and immune function in laboratory mice. Mice were maintained either at 23 degrees C or cold exposed at 5 degrees C for 10 days. Then, they were immunized with sheep red blood cells. Thus, the cold-exposed mice had either experienced or not experienced cold stress prior to immunization. Cold stress elicited a substantial increase in food intake, accompanied by a significant reduction in food digestibility. An increase in mass of metabolically active internal organs (small intestines, heart and kidney) was observed in cold-exposed mice. These findings reassured us that costs of increased thermoregulation caused by cold stress were substantial. The immune response of mice exposed to long-lasting cold stress was significantly lower, but immune response was not affected in short-exposed mice. Differences in immune response between experimental groups accompanied changes in mass of immunocompetent organs (thymus and spleen). Our findings indicate that studies of trade-offs should account for the fact that resource reallocation in response to an environmental challenge may not be immediate. In fact, resource reallocation may be postponed until the new environmental state becomes permanent or until an organism attains physiological adaptation to the current conditions.
Delayed effects of cold stress on immune response in laboratory mice.
阅读:2
作者:CichoÅ Mariusz, ChadziÅska Magdalena, Ksiazek Aneta, Konarzewski Marek
期刊: | Proceedings of the Royal Society B-Biological Sciences | 影响因子: | 3.500 |
时间: | 2002 | 起止号: | 2002 Jul 22; 269(1499):1493-7 |
doi: | 10.1098/rspb.2002.2054 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。