The ability of octocorals and stony corals to deposit calcium carbonate (CaCO3) has contributed to their ecological success. Whereas stony corals possess a homogeneous aragonite skeleton, octocorals have developed distinct skeletal structures composed of different CaCO3 polymorphs and a skeletal organic matrix. Nevertheless, the molecular basis of skeletal structure formation in octocorals remains inadequately understood. Here, we sequenced the genomes and skeletal proteomes of two calcite-forming octocorals, namely Paragorgia papillata and Chrysogorgia sp. The assembled genomes sizes were 618.13 Mb and 781.04 Mb for P. papillata and Chrysogorgia sp., respectively, with contig N50s of 2.67 Mb and 2.61 Mb. Comparative genomic analyses identified 162 and 285 significantly expanded gene families in the genomes of P. papillata and Chrysogorgia sp., respectively, which are primarily associated with biomineralization and immune response. Furthermore, comparative analyses of skeletal proteomes demonstrated that corals with different CaCO3 polymorphs share a fundamental toolkit comprising cadherin, von Willebrand factor type A, and carbonic anhydrase domains for calcified skeleton deposition. In contrast, collagen is abundant in the calcite-forming octocoral skeletons but occurs rarely in aragonitic stony corals. Additionally, certain collagens have developed domains related to matrix adhesion and immunity, which may confer novel genetic functions in octocoral calcification. These findings enhance our understanding of the diverse forms of coral biomineralization processes and offer preliminary insights into the formation and evolution of the octocoral skeleton.
The molecular basis of octocoral calcification revealed by genome and skeletal proteome analyses.
基因组和骨骼蛋白质组分析揭示八放珊瑚钙化的分子基础
阅读:13
作者:Liang Yanshuo, Xu Kuidong, Li Junyuan, Shi Jingyuan, Wei Jiehong, Zheng Xiaoyu, He Wanying, Zhang Xin
| 期刊: | Gigascience | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 6; 14:giaf031 |
| doi: | 10.1093/gigascience/giaf031 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
