Apolar and polar solvation thermodynamics related to the protein unfolding process.

阅读:4
作者:Bakk Audun, Høye Johan S, Hansen Alex
Thermodynamics related to hydrated water upon protein unfolding is studied over a broad temperature range (5-125 degrees C). The hydration effect arising from the apolar interior is modeled as an increased number of hydrogen bonds between water molecules compared with bulk water. The corresponding contribution from the polar interior is modeled as a two-step process. First, the polar interior breaks hydrogen bonds in bulk water upon unfolding. Second, due to strong bonds between the polar surface and the nearest water molecules, we assume quantization using a simplified two-state picture. The heat capacity change upon hydration is compared with model compound data evaluated previously for 20 different proteins. We obtain good correspondence with the data for both the apolar and the polar interior. We note that the effective coupling constants for both models have small variations among the proteins we have investigated.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。