Unraveling the role of the WIPF1/ACTN4 complex in podosome formation of human placental EVTs: Insights into recurrent spontaneous abortion.

阅读:2
作者:Li Cong, Wang Shengya, Tang Jing, Luo Xin, Ge Luxing, Xie Youlong, Fu Lijuan, Ruan Lingling, Adu-Gyamfi Enoch Appiah, Li Fangfang, Wang Yingxiong, Qi Hongbo, Ding Yubin
Successful placental development and pregnancy rely on effective extravillous trophoblast (EVT) invasion. The mechanisms underlying inadequate EVT invasion in recurrent spontaneous abortion (RSA) remain unclear. WAS/WASL interacting protein family member 1 (WIPF1), the key regulator of cytoskeletal dynamics, is exclusively expressed in first-trimester placental EVTs. Knockdown experiments revealed WIPF1's crucial involvement in successful placental development; reduced levels impaired cell migration, while overexpression induced the opposite effects. Moreover, WIPF1 knockdown in hTSC-derived EVTs hampered trophoblast differentiation. WIPF1 interacted with ACTN4 to regulate podosome formation, matrix degradation, and actin polymerization, potentially mediated by its ARG54 site. Notably, WIPF1 was significantly down-regulated in human RSA patient EVTs and RSA mice trophoblast giant cells (CBA/J × DBA/2). This association suggests WIPF1 as a potential key player in RSA pathogenesis. In conclusion, our study spotlights WIPF1 as a pivotal factor in EVT invasion, emphasizing its multifaceted roles and implications in pregnancy complications like RSA.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。