MEDUSA for Identifying Death Regulatory Genes in Chemo-genetic Profiling Data.

阅读:2
作者:Honeywell Megan E, Lee Michael J
Systematic screening of gain- or loss-of-function genetic perturbations can be used to characterize the genetic dependencies and mechanisms of regulation for essentially any cellular process of interest. These experiments typically involve profiling from a pool of single gene perturbations and how each genetic perturbation affects the relative cell fitness. When applied in the context of drug efficacy studies, often called chemo-genetic profiling, these methods should be effective at identifying drug mechanisms of action. Unfortunately, fitness-based chemo-genetic profiling studies are ineffective at identifying all components of a drug response. For instance, these studies generally fail to identify which genes regulate drug-induced cell death. Several issues contribute to obscuring death regulation in fitness-based screens, including the confounding effects of proliferation rate variation, variation in the drug-induced coordination between growth and death, and, in some cases, the inability to separate DNA from live and dead cells. MEDUSA is an analytical method for identifying death-regulatory genes in conventional chemo-genetic profiling data. It works by using computational simulations to estimate the growth and death rates that created an observed fitness profile rather than scoring fitness itself. Effective use of the method depends on optimal tittering of experimental conditions, including the drug dose, starting population size, and length of the assay. This manuscript will describe how to set up a chemo-genetic profiling study for MEDUSA-based analysis, and we will demonstrate how to use the method to quantify death rates in chemo-genetic profiling data.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。