Alcohol-related liver disease (ALD) is a leading cause of chronic liver conditions globally. Chronic alcohol consumption induces liver damage through various mechanisms, including neutrophil extracellular trap (NET) formation. Extracellular DNA (ecDNA), released from damaged hepatocytes and NETotic neutrophils, has emerged as a potential biomarker and contributor to liver disease pathology. Enzyme DNases could be an effective therapy for the denaturation of immunogenic ecDNA. This study investigated the circulating ecDNA and NET markers in ALD and therapeutic effect of DNase I in a murine model of ALD. Female C57BL/6J mice were fed a control diet (n = 13) or Lieber-DeCarli ethanol diet for 10 days followed by a binge ethanol dose to mimic acute-on-chronic alcoholic liver injury. From day 5, mice fed ethanol were randomized into an ethanol diet group (n = 17) and ethanol + DNase group (n = 5), which received additional DNase I treatment every 12 h. Liver damage markers were analyzed. Circulating ecDNA and NETosis were measured by fluorometry and cytometry, respectively. DNase I activity was analyzed with single radial enzyme dispersion assay. The ethanol-fed mice exhibited increased mortality, neutrophil infiltration and structural damage in the liver. Total circulating ecDNA levels and NET markers did not differ between groups. DNase activity was higher in ethanol-fed mice compared to controls and additional daily administration of DNase prevented liver injury. These findings suggest that alcohol-induced liver injury modestly influences systemic NETosis and ecDNA levels. However, increased DNase activity can prevent disease progression and enhanced systemic degradation of ecDNA using DNase I.
Therapeutic Effects of DNase I on Peripheral and Local Markers of Liver Injury and Neutrophil Extracellular Traps in a Model of Alcohol-Related Liver Disease.
DNase I 对酒精相关肝病模型中肝损伤外周和局部标志物以及中性粒细胞胞外陷阱的治疗作用
阅读:9
作者:BelvonÄÃková PaulÃna, FejeÅ¡ Andrej, Gromová Barbora, JanoviÄová Ľubica, FarkaÅ¡ová Anna, Babál Pavel, GardlÃk Roman
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 22; 26(5):1893 |
| doi: | 10.3390/ijms26051893 | 研究方向: | 细胞生物学 |
| 疾病类型: | 肝损伤 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
