Tomato leaf curl New Delhi virus (ToLCNDV) is among the most prevalent and widely distributed begomovirus infecting chili pepper (Capsicum annuum) and tomato in the Indian subcontinent. In this study, a guide RNA (gRNA) sequence-CRISPR-Cas9 approach was used to target and cleave two essential coding regions in the begomovirus genome. The gRNAs were designed to target conserved regions of the ToLCNDV replication-associated protein (rep) gene or ORF AC1, and/or the coat protein (cp) gene or AV1 ORF, respectively. Based on an alignment of 346 representative ToLCNDV genome sequences, all predicted single nucleotide polymorphisms off-target sites were identified and eliminated as potential gRNA targets. Based on the remaining genome regions, four candidate gRNAs were designed and used to build gRNA-Cas9 duplexed constructs, e.g., containing two gRNAs cloned in tandem, in different combinations (1-4). Two contained two gRNAs that targeted the coat protein gene (cp; AV1 ORF), while the other two constructs targeted both the cp and replication-associated protein gene (rep; AC1 ORF). These constructs were evaluated for the potential to suppress ToLCNDV infection in Nicotiana benthamiana plants in a transient expression-transfection assay. Among the plants inoculated with the duplexed gRNA construct designed to cleave ToLCNDV-AV1 or AC1-specific nucleotides, the construct designed to target both the cp (293-993 nt) and rep (1561-2324) showed the greatest reduction in virus accumulation, based on real-time quantitative PCR amplification, and attenuated disease symptoms, compared to plants inoculated with the DNA-A component alone or mock-inoculated, e.g., with buffer. The results demonstrate the potential for gRNA-mediated suppression of ToLCNDV infection in plants by targeting at least two viral coding regions, underscoring the great potential of CRISPR-Cas-mediated abatement of begomovirus infection in numerous crop species.
Potential for Duplexed, In-Tandem gRNA-Mediated Suppression of Two Essential Genes of Tomato Leaf Curl New Delhi Virus in Crop Plants.
阅读:3
作者:Naveed Saher, Brown Judith K, Mubin Muhammad, Javed Nazir, Nawaz-Ul-Rehman Muhammad Shah
期刊: | Pathogens | 影响因子: | 3.300 |
时间: | 2025 | 起止号: | 2025 Jul 10; 14(7):679 |
doi: | 10.3390/pathogens14070679 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。