The spatial organization of viral and host components dictates the course of infection, yet the nanoscale architecture of the SARS-CoV-2 life cycle remains largely uncharted. Here, we present a comprehensive super-resolution Atlas of SARS-CoV-2 infection, systematically mapping the localization of nearly all viral proteins and RNAs in human cells. This resource reveals that the viral main protease, nsp5, localizes to the interior of double-membrane vesicles (DMVs), challenging existing models and suggesting that polyprotein processing is a terminal step in replication organelle maturation. We identify previously undescribed features of the infection landscape, including thin dsRNA "connectors" that physically link DMVs, and large, membrane-less dsRNA granules decorated with replicase components, reminiscent of viroplasms. Finally, we show that the antiviral drug nirmatrelvir induces the formation of persistent, multi-layered bodies of uncleaved polyproteins. This spatial Atlas provides a foundational resource for understanding coronavirus biology and offers crucial insights into viral replication, assembly, and antiviral mechanisms.
A Super-Resolution Spatial Atlas of SARS-CoV-2 Infection in Human Cells.
阅读:2
作者:Andronov Leonid, Han Mengting, Balaji Ashwin, Zhu Yanyu, Qi Lei S, Moerner W E
期刊: | bioRxiv | 影响因子: | 0.000 |
时间: | 2025 | 起止号: | 2025 Aug 18 |
doi: | 10.1101/2025.08.15.670620 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。