Identifying Receptor Kinase Substrates Using an 8000 Peptide Kinase Client Library Enriched for Conserved Phosphorylation Sites.

阅读:2
作者:Kim Daewon, Jorge Gabriel Lemes, Xu Chunhui, Su Lingtao, Cho Sung-Hwan, Ahsan Nagib, Chen Dongqin, Zhou Lijuan, Gritsenko Marina A, Zhou Mowei, Wan Jinrong, Pasa-Tolic Ljiljana, Xu Dong, Bartley Laura E, Thelen Jay J, Stacey Gary
In eukaryotic organisms, protein kinases regulate diverse protein activities and signaling pathways through phosphorylation of specific protein substrates. Isolating and characterizing kinase substrates is vital for defining downstream signaling pathways. The kinase-client (KiC) assay is an in vitro synthetic peptide LC-MS/MS phosphorylation assay that has enabled identification of protein substrates (i.e., clients) for various protein kinases. For example, previous use of a 2100-member (2k) peptide library identified substrates for the extracellular ATP receptor-like kinase, P2K1. Many P2K1 clients were confirmed by additional in vitro and in planta studies, including integrin-linked kinase 4, for which we provide the evidence herein. In addition, we developed a new KiC peptide library containing 8000 (8k) peptides based on phosphorylation sites primarily from Arabidopsis thaliana datasets. The 8k peptides are enriched for sites with conservation in other angiosperm plants, with the paired goals of representing functionally conserved sites and usefulness for screening kinases from diverse plants. Screening the 8k library with the active P2K1 kinase domain identified 177 phosphopeptides, including calcineurin B-like protein and G protein alpha subunit 1, which functions in cellular calcium signaling. We confirmed that P2K1 directly phosphorylates calcineurin B-like protein and G protein alpha subunit 1 through in vitro kinase assays. This expanded 8k KiC assay will be a useful tool for identifying novel substrates across diverse plant protein kinases, ultimately facilitating the exploration of previously undiscovered signaling pathways.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。