Dissecting the mechanism of NOP56 GGCCUG repeat-associated non-AUG translation using cell-free translation systems.

阅读:2
作者:Hasumi Mayuka, Ito Hayato, Machida Kodai, Niwa Tatsuya, Taminato Tomoya, Nagai Yoshitaka, Imataka Hiroaki, Taguchi Hideki
The repeat expansion in the human genome contributes to neurodegenerative disorders such as spinocerebellar ataxia (SCA) and amyotrophic lateral sclerosis. Transcripts with repeat expansions undergo noncanonical translation called repeat-associated non-AUG (RAN) translation. The NOP56 gene, implicated in SCA36, contains a GGCCTG repeat in its first intron. In tissues of patients with SCA36, poly (Gly-Pro) and poly (Pro-Arg) peptides, likely produced through NOP56 RAN translation in (NOP56-RAN), have been detected. However, the detailed mechanism underlying NOP56-RAN remains unclear. To address this, we used cell-free translation systems to investigate the mechanism of NOP56-RAN and identified the following features. (i) Translation occurs in all reading frames of the sense strand of NOP56 intron 1. (ii) Translation is initiated in a 5' cap-dependent manner from near-cognate start codons upstream of the GGCCUG repeat in each frame. (iii) Longer GGCCUG repeats enhance NOP56-RAN. (iv) A frameshift occurs within the GGCCUG repeat. These findings provide insights into the similarities between NOP56-RAN and other types of RAN translation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。