Stallion spermatozoa express LDH isoforms A, B, and C, with LDHC playing a crucial role in sustaining sperm viability.

阅读:3
作者:Becerro-Rey Laura, Martín-Cano Francisco E, Silva-Rodríguez Antonio, Ortega-Ferrusola Cristina, da Silva-Álvarez Eva, Ortiz-Placín Cándido, Tapia Jose Antonio, Gil María Cruz, Peña Fernando J
IN BRIEF: Three isoforms of lactate dehydrogenase (LDH) - LDHA (cytoplasmic), LDHB (mitochondrial), and LDHC (flagellar) - have been identified and localized in stallion spermatozoa. Functional inhibition assays indicate that these three isoforms constitute a lactate shuttle of crucial importance for sperm function. ABSTRACT: Stallion spermatozoa use different energy sources; while oxidative phosphorylation predominates, glycolysis and beta-oxidation of fatty acids are also present. Glycolysis depends on the availability of NAD+ as an electron acceptor. During glycolysis, NAD+ is reduced to NADH. To ensure glycolysis can continue, NAD+ must be regenerated. This regeneration typically occurs when NADH donates its electrons to the electron transport chain (specifically at Complex I), where it is oxidized back to NAD+. If mitochondria are damaged, the regeneration of NAD+ may be compromised, leading to reduced glycolysis and altering sperm metabolism. However, alternative ways to regenerate NAD+ may be present. We hypothesized that aerobic glycolysis is present in the stallion spermatozoa as a backup mechanism to regenerate NAD+. We incubated spermatozoa in two Tyrode's modified media with either 67 mM glucose and 1 mM pyruvate or 67 mM glucose and 10 mM pyruvate. The addition of 10 mM pyruvate improved sperm motility (P < 0.001). Spermatozoa incubated in 67 mM glucose and 1 mM pyruvate for 3 h at 37°C showed a significant decrease in motility (58.1 ± 1.8% vs 81.2 ± 1.8%, P < 0.0001). In contrast, spermatozoa incubated in 67 mM glucose and 10 mM pyruvate retained motility (77.1 ± 1.4%), viability, and mitochondrial membrane potential. We studied the metabolic proteome and metabolome and identified three different isoforms of the enzyme lactate dehydrogenase (LDH), LDHA (cytosolic), LDHB (mitochondrial, with higher affinity for pyruvate), and LDHC (cytosol, motile cilium). Functional experiments using a specific inhibitor of LDHC demonstrated that this isoform may be essential for sperm function. We concluded that activation of aerobic glycolysis in a high-glucose medium improves sperm survival through the regeneration of NAD+.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。