METTL3 inhibits primed-to-naïve transition of pluripotent stem cells through m(6)A-YTHDF2-pluripotency/Gstp1 mRNA degradation axis.

阅读:2
作者:Li Sa, Hao Jiajie, Hong Guangliang, Dong Hongzhi, Liu He, Jin Lingmei, Zhang Zhihao, Wu Haoyu, Hu Mingli, Huang Rujin, Luo Guanzheng, He Jiangping, Chen Jiekai, Wu Kaixin
N6-methyladenosine (m(6)A) plays crucial roles in development and cellular reprogramming. During embryonic development, pluripotency transitions from a naïve to a primed state, and modeling the reverse primed-to-naïve transition (PNT) provides a valuable framework for investigating pluripotency regulation. Here, we show that inhibiting METTL3 significantly promotes PNT in an m(6)A-dependent manner. Mechanistically, we found that suppressing METTL3 and YTHDF2 prolongs the lifetimes of pluripotency-associated mRNAs, such as Nanog and Sox2, during PNT. In addition, Gstp1 was identified as a downstream target of METTL3 inhibition and YTHDF2 knockout. Gstp1 overexpression enhances PNT, whereas its inhibition impedes the transition. Overall, our findings suggest that YTHDF2 facilitates the removal of pluripotency gene transcripts and Gstp1, thereby promoting PNT reprogramming through m(6)A-mediated posttranscriptional control.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。