Targeting CyclinD1-CDK6 to Mitigate Senescence-Driven Inflammation and Age-Associated Functional Decline.

阅读:2
作者:Rajesh Adarsh, Havas Aaron P, Arnold Rouven, Lande Kathryn, Evensen K Garrett, Li Kelly Yichen, Mamde Sainath, Yang Qian, Gandhi Armin, Miller Karl N, Teneche Marcos Garcia, Yao Zoe, Proulx Jessica, Davis Andrew, Haddadin Laurence, Alcaraz Michael, Macip Carolina C, Li Brightany, Lei Xue, Miciano Charlene, Smoot Elizabeth, Wang Allen, Albrecht Jeffrey H, Williams April E, Ren Bing, Yip Kevin Y, Adams Peter D
Cellular senescence contributes to aging and age-related diseases by driving chronic inflammation through the Senescence Associated Secretory Phenotype (SASP) and interferon-stimulated genes (ISGs). Cyclin D1 (CCND1), a key cell cycle regulator, is paradoxically upregulated in these non-proliferating cells. We show that CCND1 and its kinase partner CDK6 drive SASP and ISG expression in senescent cells by promoting DNA damage accumulation. This leads to the formation of cytoplasmic chromatin fragments (CCFs) that activate pro-inflammatory CGAS-STING signaling. The tumor suppressor p53 (TP53) and its target p21 (CDKN2A) antagonize this CCND1-CDK6-dependent DNA damage accumulation pathway to suppress the SASP. In aged mouse livers, senescent hepatocytes show increased Ccnd1 expression. Hepatocyte-specific Ccnd1 knockout or treatment with the Cdk4/6 inhibitor Palbociclib reduces DNA damage and ISGs in aged mouse liver. Notably, Palbociclib also suppresses frailty and improves physical performance of aged mice. These findings reveal a novel role for CCND1/CDK6 in regulating DNA damage and inflammation in senescence and aging, highlighting it as a promising therapeutic target.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。