The bacterial transcription terminator Rho is a hexameric ATP-dependent RNA helicase that dislodges elongating RNA polymerases. It has an N-terminal primary RNA binding site (PBS) on each subunit and a C-terminal secondary RNA binding site at the central channel. Here, we show that Rho also binds to linear longer double-stranded DNAs (dsDNAs) and the circular plasmids nonspecifically using its PBS. However, this interaction could be competed efficiently by single-stranded DNA (ssDNA), dC34. Long dsDNA (3.5 kb) at the PBS activates short oligo C RNA-mediated ATPase activity at the secondary binding site (SBS). The pre-bound Rho to this long DNA reduces the rate and efficiency of its transcription termination activities in vitro. Elevated concentrations of Rho reduced the in vitro transcription level suggesting that Rho might also function as a nonspecific repressor of gene expression under certain conditions. In the mid-log phase culture, Rho molecules were concentrated at the poles and along the membrane. In contrast, the Rho hexamers were observed to be distributed over the bacterial chromosome in the stationary phase likely in a hyper-oligomeric state composed of oligomers of hexamers. We propose that Rho molecules not engaged in the transcription termination process could use the bacterial chromosome as a "resting surface". This way the "idle" DNA-bound Rho molecules could be kept away from accidentally loading onto the nascent RNA and initiating unwanted transcription termination.
DNA binding of an RNA helicase bacterial transcription terminator.
RNA解旋酶细菌转录终止子的DNA结合
阅读:15
作者:Jain Sriyans, Behera Abhijeet, Sen Ranjan
| 期刊: | Biochemical Journal | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Feb 5; 482(3):103-117 |
| doi: | 10.1042/BCJ20240452 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
