The bacterial transcription terminator Rho is a hexameric ATP-dependent RNA helicase that dislodges elongating RNA polymerases. It has an N-terminal primary RNA binding site (PBS) on each subunit and a C-terminal secondary RNA binding site at the central channel. Here, we show that Rho also binds to linear longer double-stranded DNAs (dsDNAs) and the circular plasmids nonspecifically using its PBS. However, this interaction could be competed efficiently by single-stranded DNA (ssDNA), dC34. Long dsDNA (3.5 kb) at the PBS activates short oligo C RNA-mediated ATPase activity at the secondary binding site (SBS). The pre-bound Rho to this long DNA reduces the rate and efficiency of its transcription termination activities in vitro. Elevated concentrations of Rho reduced the in vitro transcription level suggesting that Rho might also function as a nonspecific repressor of gene expression under certain conditions. In the mid-log phase culture, Rho molecules were concentrated at the poles and along the membrane. In contrast, the Rho hexamers were observed to be distributed over the bacterial chromosome in the stationary phase likely in a hyper-oligomeric state composed of oligomers of hexamers. We propose that Rho molecules not engaged in the transcription termination process could use the bacterial chromosome as a "resting surface". This way the "idle" DNA-bound Rho molecules could be kept away from accidentally loading onto the nascent RNA and initiating unwanted transcription termination.
DNA binding of an RNA helicase bacterial transcription terminator.
阅读:2
作者:Jain Sriyans, Behera Abhijeet, Sen Ranjan
期刊: | Biochemical Journal | 影响因子: | 4.300 |
时间: | 2025 | 起止号: | 2025 Feb 5; 482(3):103-117 |
doi: | 10.1042/BCJ20240452 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。