Double strand breaks drive toxicity in Huntington's disease mice with or without somatic expansion.

双链断裂会导致亨廷顿病小鼠出现毒性,无论是否存在体细胞扩增

阅读:7
作者:Polyzos Aris A, Cheong Ana, Yoo Jung Hyun, Blagec Lana, Nagel Zachary D, McMurray Cynthia T
There has been a substantial investment in elucidating the mechanism of expansion in hopes of identifying therapeutic targets for Huntington disease (HD). Although an expanded CAG allele is the causal mutation for HD, there is evidence that somatic expansion may not be the only disease driver. We report here that double strand breaks (DSBs) drive HD toxicity by an independent mechanism from somatic expansion. The mutant HD protein inhibits non-homologous end joining (NHEJ) activity, leading to the accumulation of DSBs. DSBs promote transcriptional pathology in mice that cannot expand their CAG tracts somatically. Conversely, Inhibition of DSBs reverses neuronal toxicity in animals that undergo somatic expansion. Although they coexist in neurons, DSBs and somatic expansion are independent therapeutic targets for HD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。