Model-guided design of microRNA-based gene circuits supports precise dosage of transgenic cargoes into diverse primary cells.

基于模型的microRNA基因回路设计支持将转基因货物精确地导入各种原代细胞

阅读:9
作者:Love Kasey S, Johnstone Christopher P, Peterman Emma L, Gaglione Stephanie, Birnbaum Michael E, Galloway Kate E
In a therapeutic context, supraphysiological expression of transgenes can compromise engineered phenotypes and lead to toxicity. To ensure a narrow range of transgene expression, we developed a single-transcript, microRNA-based incoherent feedforward loop called compact microRNA-mediated attenuator of noise and dosage (ComMAND). We experimentally tuned the ComMAND output profile, and we modeled the system to explore additional tuning strategies. By comparing ComMAND to two-gene implementations, we demonstrate the precise control afforded by the single-transcript architecture, particularly at low copy numbers. We show that ComMAND tightly regulates transgene expression from lentiviruses and precisely controls expression in primary human T cells, primary rat neurons, primary mouse embryonic fibroblasts, and human induced pluripotent stem cells. Finally, ComMAND effectively sets levels of the clinically relevant transgenes frataxin (FXN) and fragile X messenger ribonucleoprotein 1 (Fmr1) within a narrow window. Overall, ComMAND is a compact tool well suited to precisely specify the expression of therapeutic cargoes. A record of this paper's transparent peer review process is included in the supplemental information.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。