The DNA component of neutrophil extracellular traps (NET-DNA) is associated with cancer metastasis and chemotherapy resistance. However, recent studies have suggested that NET-DNA contributes to the activation of dendritic cells (DCs) and promotes the innate immune response to anticancer immunity. Therefore, exploring therapeutic approaches to inhibit NET-mediated tumor progression while maintaining antitumor immunity is essential. Our groups recently identified CCDC25 as a specific NET-DNA sensor on the cytoplasmic membrane of cancer cells that promotes cancer metastasis. In this study, we performed small-molecule compound screening and revealed that mitoxantrone (MTO) could block the interaction between NET-DNA and CCDC25. Molecular docking results indicated that MTO competed with NET-DNA by binding with the amino acid residues Tyr(24) (Y24), Glu(25) (E25), and Asp(28) (D28) of the crystal structure of CCDC25. More importantly, we conjugated MTO with palmitoleic acids such as di-Pal-MTO to increase its residence time on the cytoplasmic membrane, which increased its inhibitory efficiency and decreased its cytotoxicity. In addition, di-Pal-MTO markedly inhibited the RAC1-CDC42 cascade to alleviate the NET-induced cytoskeleton arrangement and chemotactic migration of cancer cells. In multiple mouse models, di-Pal-MTO can suppress breast cancer metastasis and have synergistic effects with chemotherapeutics. Moreover, di-Pal-MTO promotes NET-DNA-dependent DC activation, leading to the subsequent expression of various chemokines that facilitate the infiltration of CD8(+) T cells. Overall, we successfully identified a small molecule inhibitor, di-Pal-MTO, with dual effects on tumor repression and the antitumor immune response, which provides a novel therapeutic strategy against breast cancer.
The NET-DNA-CCDC25 inhibitor di-Pal-MTO suppresses tumor progression and promotes the innate immune response.
阅读:2
作者:Wang Shun, Liang Xinyan, Li Heliang, Zou Junying, Xu Linxi, Zhang Yetong, Lin Jianghua, Zeng Jiayi, Zhong Xiaoming, Liu Xu, Liu Zhou, Zheng Yue, Nie Man, Yang Linbin
期刊: | Cellular & Molecular Immunology | 影响因子: | 19.800 |
时间: | 2025 | 起止号: | 2025 Jun;22(6):628-644 |
doi: | 10.1038/s41423-025-01286-7 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。