Developing drug-like single-domain antibodies (VHH) from in vitro libraries.

从体外文库中开发类药单域抗体(VHH)

阅读:9
作者:Erasmus M Frank, Teixeira Andre A R, Molina Esteban, Rodriguez Carnero Luis Antonio, Li Jianquan, Knight David, Di Niro Roberto, Leal-Lopes Camila, Fanni Adeline, Troell Hallie, DeAguero Ashley, Spector Laura, D'Angelo Sara, Ferrara Fortunato, Bradbury Andrew R M
Here, we describe a new VHH library for therapeutic discovery which optimizes humanness, stability, affinity, diversity, developability, and facile purification using protein A in the absence of an Fc domain. Four therapeutic humanized VHHs were used as scaffolds, into which we inserted human HCDR1s, HCDR2s and HCDR3s. The HCDR1 and HCDR2 sequences were derived from human VH3 family next-generation sequencing datasets informatically purged of sequence liabilities, synthesized as array-based oligonucleotides, cloned as single CDR libraries into each of the parental scaffolds and filtered for protein A binding by yeast display to ensure correct folding and display. After filtering, the CDR1 and CDR2 libraries were combined with amplified human HCDR3 from human CD19(+) IgM(+) B cells. This library was further improved by eliminating long consecutive stretches of tyrosines in CDR3 and enriching for CDR1-2 diversity with elevated tolerance to high temperatures. A broad diversity of high affinity (100 pM-10 nM), developable binders was directly isolated, with developability evaluated for most assays using the isolated VHHs, rather than fused to Fc, which is customary. This represents the first systematic developability assessment of isolated VHH molecules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。