T(H)17/Treg lymphocyte balance is regulated by beta adrenergic and cAMP signaling.

T(H)17/Treg淋巴细胞平衡受β肾上腺素能和cAMP信号传导调节

阅读:10
作者:Lauten Tatlock H, Elkhatib Safwan K, Natour Tamara, Reed Emily C, Jojo Caroline N, Case Adam J
BACKGROUND: Post-traumatic stress disorder (PTSD) is a debilitating psychological disorder that also presents with neuroimmune irregularities. Patients display elevated sympathetic tone and are at an increased risk of developing secondary autoimmune diseases. Previously, using a mouse model of repeated social defeat stress (RSDS) that recapitulates certain features of PTSD, we demonstrated that elimination of sympathetic signaling to T-lymphocytes specifically limited their ability to produce pro-inflammatory interleukin 17A (IL-17A); a cytokine implicated in the development of many autoimmune disorders. However, the mechanism linking sympathetic signaling to T-lymphocyte IL-17A production remained unclear. METHODS: Using a modified version of RSDS that allows for both males and females, as well as ex vivo models of T-lymphocyte polarization, we assessed the impact and mechanism of adrenergic receptor blockade (genetically and pharmacologically) and catecholamine depletion on T-lymphocyte differentiation to IL-17A-producing subtypes (i.e., T(H)17). RESULTS: Only pharmacological inhibition of the beta 1 and 2 adrenergic receptors (β1/2) significantly decreased circulating IL-17A levels after RSDS, but did not impact other pro-inflammatory cytokines (e.g.,IL-6, TNF-α, and IL-10). This finding was confirmed using RSDS with both global β1/2 receptor knock-out mice, as well as by adoptively transferring β1/2 knock-out T-lymphocytes into immunodeficient hosts. Ex vivo polarized T-lymphocytes produced significantly less IL-17A with the blockade of β1/2 signaling, even in the absence of exogenous sympathetic neurotransmitter supplementation, which suggested T-lymphocyte-produced catecholamines may be involved in IL-17A production. Furthermore, cyclic AMP (cAMP) was demonstrated to be mechanistically involved in driving IL-17A production in T-lymphocytes, and amplifying cAMP signaling could restore IL-17A deficits caused by the absence of β1/2 signaling. Last, removal of β1/2 and cAMP signaling, even in IL-17A polarizing conditions, promoted regulatory T-lymphocyte (Treg) polarization, suggesting adrenergic signaling plays a role in the switching between pro- and anti-inflammatory T-lymphocyte subtypes. CONCLUSIONS: Our data depict a novel role for β1/2 adrenergic and cAMP signaling in the balance of T(H)17/Treg lymphocytes. These findings provide a new target for pharmacological therapy in both psychiatric and autoimmune diseases associated with IL-17A-related pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。