Pulmonary exposure to peat smoke extracts in rats decreases expiratory time and increases left heart end systolic volume.

大鼠肺部暴露于泥炭烟雾提取物后,呼气时间缩短,左心室收缩末期容积增加

阅读:7
作者:Thompson Leslie C, Kim Yong Ho, Martin Brandi L, Ledbetter Allen D, Dye Janice A, Hazari Mehdi S, Gilmour M Ian, Farraj Aimen K
Exposure to wildland fire-related particulate matter (PM) causes adverse health outcomes. However, the impacts of specific biomass sources remain unclear. The purpose of this study was to investigate cardiopulmonary responses in rats following exposure to PM extracts collected from peat fire smoke. We hypothesized that peat smoke PM would dose-dependently alter cardiopulmonary function. Male Sprague-Dawley rats (n = 8/group) were exposed to 35 µg (Lo PM) or 350 µg (Hi PM) of peat smoke PM extracts suspended in saline, or saline alone (Vehicle) via oropharyngeal aspiration (OA). Ventilatory expiration times, measured in whole-body plethysmographs immediately after OA, were the lowest in Hi PM exposed subjects at 6 min into recovery (p = .01 vs. Lo PM, p = .08 vs. Vehicle) and resolved shortly afterwards. The next day, we evaluated cardiovascular function in the same subjects via cardiac ultrasound under isoflurane anesthesia. Compared to Vehicle, Hi PM had 45% higher end systolic volume (p = .03) and 17% higher pulmonary artery blood flow acceleration/ejection time ratios, and both endpoints expressed significant increasing linear trends by dose (p = .01 and .02, respectively). In addition, linear trend analyses across doses detected an increase for end diastolic volume and decreases for ejection fraction and fractional shortening. These data suggest that exposure to peat smoke constituents modulates regulation of ventricular ejection and filling volumes, which could be related to altered blood flow in the pulmonary circulation. Moreover, early pulmonary responses to peat smoke PM point to irritant/autonomic mechanisms as potential drivers of later cardiovascular responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。