Natural fibers have attracted increasing interest as an alternative to produce environmentally friendly and sustainable materials. Particularly, hemp fibers have been widely used in various industrial applications due to their extremely unique properties. However, hemp can generate a large amount of agro-waste, and it results in an attractive source of biopolymers for the development of low-cost materials as an alternative to the raw materials and conventional petroleum-based plastics. In addition, deep eutectic solvents (DESs), a new type of truly green solvents, have been shown to remove gums, lignin, and other non-cellulosic components from hemp fibers. Reusing these components dissolved into the DESs to fabricate new materials directly by electrospinning is a very attractive but still unexplored endeavor. Thus, this innovative research to venture new upcycling pathways is focused on the fabrication of composite nanofibers by electrospinning of a gel-based blend of Poly(vinyl alcohol) (PVA) and hemp agro-waste (HW) dissolved into choline chloride (ChCl):Glycerol (1:2) and ChCl:Urea (1:2) DES mixtures. The results obtained revealed that the produced nanofibers displayed uniform appearance with diameters ranging from 257.7 ± 65.6 nm to 380.8 ± 134.0 nm. In addition, the mechanical properties of the electrospun composite nanofibers produced from the gel-based blends of HW dissolved in DESs and PVA (HW-DESs_PVA) were found to be superior, resulting in an enhanced tensile strength and Young's modulus. Furthermore, the incorporation of HW into the nanofibers was able to provide bioactive antioxidant and antibacterial properties. Overall, this study demonstrated a promising, more sustainable, and eco-friendly way to produce electrospun composite nanofibers using HW in a circular economy perspective.
From Hemp Waste to Bioactive Nanofiber Composites: Deep Eutectic Solvents and Electrospinning in Upcycling Endeavors.
从大麻废料到生物活性纳米纤维复合材料:深共熔溶剂和静电纺丝在升级再造中的应用
阅读:6
作者:Mouro Cláudia, Gomes Ana P, Gouveia Isabel C
| 期刊: | Gels | 影响因子: | 5.300 |
| 时间: | 2023 | 起止号: | 2023 Dec 19; 10(1):1 |
| doi: | 10.3390/gels10010001 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
