Phase separation regulates many biological processes, but the role of transcription factor (TF)-mediated condensates in gene regulation is contentious. We used Gcn4, a prototypical budding yeast TF, to assess two competing models for transcription activation, i.e., mediated via soluble complexes or through transcriptional condensates. We find that the ability of Gcn4 to form soluble complexes with coactivator subunit Med15 closely mirrors its propensity to recruit Med15 into condensates. Both properties are predictive of in vivo activity, cautioning against interpretation of mutational data without direct comparisons. Unexpectedly, Gcn4 variants with the highest affinities for Med15 do not function as per expectation. Instead, their lower activities reflect their ability to phase separate with Med15, suggesting that condensate formation tempers their activity. Our results show that TFs can function as soluble complexes as well as condensates, reconciling two seemingly opposing models, with implications for other phase-separating systems.
Reconciling competing models on the roles of condensates and soluble complexes in transcription factor function.
阅读:2
作者:Bremer Anne, Lang Walter H, Kempen Ryan P, Sweta Kumari, Taylor Aaron B, Borgia Madeleine B, Ansari Aseem Z, Mittag Tanja
期刊: | Molecular Cell | 影响因子: | 16.600 |
时间: | 2025 | 起止号: | 2025 Jul 17; 85(14):2718-2732 |
doi: | 10.1016/j.molcel.2025.06.008 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。