Programmable chronogenetic gene circuits for self-regulated circadian delivery of biologic drugs.

阅读:2
作者:Cimino Amanda, Pat Fiona, Oyebamiji Omolabake, Pferdehirt Lara, Pham Christine T N, Herzog Erik D, Guilak Farshid
Cells of the body rely on the circadian clock to orchestrate daily changes in physiology that impact both homeostatic and pathological conditions, such as the inflammatory autoimmune disease rheumatoid arthritis (RA). In RA, high levels of proinflammatory cytokines peak early in the morning hours, reflected by daily changes in joint stiffness. Chronotherapy (or circadian medicine) seeks to delivery drugs at optimal times to maximize their efficacy. However, chronotherapy remains a largely unexplored approach for disease modifying, antirheumatic treatment, particularly for cell-based therapies. In this study, we developed autonomous chronogenetic gene circuits that produce the biologic drug interleukin-1 receptor antagonist (IL-1Ra) with desired phase and amplitude. We compared expression of IL-1Ra from circuits that contained different circadian promoter elements (E'-boxes, D-boxes, or RREs) and their ability to respond to inflammatory challenges in murine pre-differentiated induced pluripotent stem cells (PDiPSC) or engineered cartilage pellets. We confirmed that each circuit reliably peaked at a distinct circadian time over multiple days. Engineered cells generated significant amounts of IL-1Ra on a circadian basis, which protected them from circadian dysregulation and inflammatory damage. These programmable chronogenetic circuits have the potential to align with an individual's circadian rhythm for optimized, self-regulated daily drug delivery.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。