Programmable chronogenetic gene circuits for self-regulated circadian delivery of biologic drugs.

用于生物药物自我调节昼夜节律递送的可编程时间发生基因回路

阅读:7
作者:Cimino Amanda, Pat Fiona, Oyebamiji Omolabake, Pferdehirt Lara, Pham Christine T N, Herzog Erik D, Guilak Farshid
Cells of the body rely on the circadian clock to orchestrate daily changes in physiology that impact both homeostatic and pathological conditions, such as the inflammatory autoimmune disease rheumatoid arthritis (RA). In RA, high levels of proinflammatory cytokines peak early in the morning hours, reflected by daily changes in joint stiffness. Chronotherapy (or circadian medicine) seeks to delivery drugs at optimal times to maximize their efficacy. However, chronotherapy remains a largely unexplored approach for disease modifying, antirheumatic treatment, particularly for cell-based therapies. In this study, we developed autonomous chronogenetic gene circuits that produce the biologic drug interleukin-1 receptor antagonist (IL-1Ra) with desired phase and amplitude. We compared expression of IL-1Ra from circuits that contained different circadian promoter elements (E'-boxes, D-boxes, or RREs) and their ability to respond to inflammatory challenges in murine pre-differentiated induced pluripotent stem cells (PDiPSC) or engineered cartilage pellets. We confirmed that each circuit reliably peaked at a distinct circadian time over multiple days. Engineered cells generated significant amounts of IL-1Ra on a circadian basis, which protected them from circadian dysregulation and inflammatory damage. These programmable chronogenetic circuits have the potential to align with an individual's circadian rhythm for optimized, self-regulated daily drug delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。