Mechanisms of neutralization of toxSAS from toxin-antitoxin modules.

毒素-抗毒素模块中和 toxSAS 的机制

阅读:12
作者:Dominguez-Molina Lucia, Kurata Tatsuaki, Cepauskas Albinas, Echemendia-Blanco Dannele, Zedek Safia, Talavera-Perez Ariel, Atkinson Gemma C, Hauryliuk Vasili, Garcia-Pino Abel
Toxic small alarmone synthetase (toxSAS) enzymes constitute a family of bacterial effectors present in toxin-antitoxin and secretion systems. toxSASs act through either translation inhibition mediated by pyrophosphorylation of transfer RNA (tRNA) CCA ends or synthesis of the toxic alarmone adenosine pentaphosphate ((pp)pApp) and adenosine triphosphate (ATP) depletion, exemplified by FaRel2 and FaRel, respectively. However, structural bases of toxSAS neutralization are missing. Here we show that the pseudo-Zn(2+) finger domain (pZFD) of the ATfaRel2 antitoxin precludes access of ATP to the pyrophosphate donor site of the FaRel2 toxin, without affecting recruitment of the tRNA pyrophosphate acceptor. By contrast, (pp)pApp-producing toxSASs are inhibited by Tis1 antitoxin domains though occlusion of the pyrophosphate acceptor-binding site. Consequently, the auxiliary pZFD of AT2faRel is dispensable for FaRel neutralization. Collectively, our study establishes the general principles of toxSAS inhibition by structured antitoxin domains, with the control strategy directly coupled to toxSAS substrate specificity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。