Psy-E1 derived from Thinopyrum ponticum contributes strong yellowness to durum wheat but may cause yield loss in Japan.

阅读:2
作者:Kato Keita, Ban Yusuke, Yanaka Mikiko, Yoshioka Motohiro, Okusu Hideki, Tanaka Tomoki, Kawakami Hiroyuki, Yamaguchi Masahiro, Funatsuki Wakako, Takata Kanenori, Ito Miwako
Strong yellow color, caused by carotenoid accumulation, in semolina flour made from durum wheat (Triticum turgidum L. subsp. durum (Desf.)) is one of the most important traits for pasta production. The first step in the carotenoid biosynthesis pathway, which is catalyzed by phytoene synthase (PSY), is a bottleneck, and allelic variation of Psy-A1 in durum wheat produces different yellow pigment contents (YPC) in seeds. Durum wheat carrying leaf rust resistance gene Lr19, which was translocated from wheat relative Thinopyrum ponticum chromosome 7E to durum wheat chromosome 7A, is known to produce high YPC, and the causal gene is presumed to be Psy-E1, which is tightly linked to Lr19. In this study, Psy-E1 produced higher YPC than Psy-A1 alleles, such as Psy-A1k, Psy-A1l and Psy-A1o, in durum wheat. Segregation analysis demonstrated that Psy-E1 is located at the Psy-A1 locus on chromosome 7A. In a 2-year field test of near-isogenic materials, Psy-E1 was accompanied by yield loss with decreases in grain number per spike, test weight and thousand-kernel weight under moisture conditions typical of wheat-growing areas of Japan. Thus, Psy-E1 has the potential to contribute high YPC in durum wheat breeding programs, although the applicable cultivation environments are limited.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。