This study introduces an indigenous bacterial strain, Exiguobacterium sp. (L.O), isolated from sugarcane fields in Sevur, Tamil Nadu, which has adapted to prolonged exposure to dimethoate. The strain demonstrated the capability to utilize 150 ppm of dimethoate as its sole carbon source, achieving a remarkable degradation rate of 95.87% within 5 days in mineral salt media. Gas chromatography-mass spectrometry (GC-MS) analyses identified the presence of intermediate by-products formed during degradation, like methyl diethanol amine and aspartyl glycine ethyl ester. Notably, phosphorothioic O, O, S-acid, an expected end product in the degradation of dimethoate, was also identified, further confirming the strain's effective metabolic breakdown of the pesticide. Further degradation study and analysis of changes in functional group was performed by FTIR, and a hypothetical degradation pathway was elucidated showing the course of dimethoate metabolism by the strain. Exiguobacterium sp. (L.O) also displayed significant plant growth-promoting traits, including the production of HCN, IAA, and ammonia and the formation of biofilms, which enhance its utility in agricultural applications. The ecotoxicity study revealed the degradation by-products exhibited reduced toxicity compared to the parent compound dimethoate, highlighting the strain's potential not only for bioremediation but also for supporting sustainable agricultural practices. This research presents a novel application of Exiguobacterium sp. (L.O), integrating the bioremediation of the organophosphate pesticide dimethoate with agricultural enhancement. This approach is critical for addressing the challenges associated with pesticide pollution in agricultural practices. This study is likely the first to demonstrate the application of this strain in the degradation of dimethoate, as suggested by an extensive review of the literature.
Functional profiling of the rhizospheric Exiguobacterium sp. for dimethoate degradation, PGPR activity, biofilm development, and ecotoxicological risk.
对根际Exiguobacterium sp.进行功能分析,研究其对二甲硫醚的降解、PGPR活性、生物膜发育和生态毒理风险
阅读:7
作者:Sur Saheli, Sathiavelu Mythili
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Nov 26; 14(1):29361 |
| doi: | 10.1038/s41598-024-80559-z | 研究方向: | 发育与干细胞 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
