This study develops bio-nano composite gelatin-based edible film (NEF) by combining nanogelatin, cellulose nanocrystal (CNC), and nanopropolis (NP) fillers to improve the resulting film characteristics. The NEF was characterized in terms of thickness, swelling, pH, water content, solubility, vapor and oxygen permeability, mechanical properties, heat resistance, morphology, transparency, and color. The results showed that the thickness and swelling increased significantly, whilst the pH did not significantly differ in each treatment. The water content and the water solubility also showed no significant changes with loadings of both fillers. At the same time, vapor and oxygen permeability decreased with addition of the fillers but were not significantly affected by the loading amounts. The heat resistance properties increased with the filler addition. Tensile strength and Youngâs modulus increased for the films loaded with >3% CNC. The elongation at break showed a significant difference together with transparency and color change. The greater the CNC concentration and NP loading were, the darker the resulting transparency and the color of the NEF. Overall results show a considerable improvement in the properties of the resulting NEFs with the incorporation of CNC and NP fillers.
Bio-Nanocomposite Based on Edible Gelatin Film as Active Packaging from Clarias gariepinus Fish Skin with the Addition of Cellulose Nanocrystalline and Nanopropolis.
以非洲鲶鱼皮为原料,添加纳米晶纤维素和纳米蜂胶,制成可食用明胶膜生物纳米复合材料作为活性包装材料
阅读:9
作者:Ratna, Aprilia Sri, Arahman Nasrul, Bilad Muhammad Roil, Suhaimi Hazwani, Munawar Agus Arip, Nasution Indera Sakti
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2022 | 起止号: | 2022 Sep 7; 14(18):3738 |
| doi: | 10.3390/polym14183738 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
