A study on rapid simulation of mine roadway fires for emergency decision-making.

一项关于快速模拟矿井巷道火灾以辅助应急决策的研究

阅读:6
作者:Chen Yangqin, Liu Jian, Zhou Qichao, Liu Li, Wang Dong
In traditional mine fire simulation, the FDS simulation software has been verified by large-scale and full-size fire experiments. The resulting calculations closely align with real-world scenarios, making it a valuable tool for simulating mine fires. However, when a fire occurs in a mine, utilizing FDS software to predict the fire situation in the mine entails a sequence of steps, including modeling, environmental parameter setting, arithmetic, and data processing, which takes time in terms of days, thus making it difficult to meet the demand for emergency decision-making timelines. To address the need for rapid predictions of mine tunnel fire development, a method for swiftly estimating environmental parameters and the concentration of causative factors at various times and locations post-fire has been devised. FDS software was employed to simulate numerous roadway fires under diverse conditions. Parameters such as fire source intensity, roadway cross-sectional area, roadway wind speed, roadway inclination angle, time, and others were utilized as the input layer for a neural network. In contrast, wind flow temperature, carbon monicide (CO) concentration, fire wind pressure, visibility, and others were designated as the output layer for training the neural network model. This approach established a fire prediction model to resolve issues related to time-consuming numerical simulations and the inability to provide a rapid response to disaster emergencies. The trained neural network model can instantaneously predict the environmental parameters and concentrations of the causative factors at different times and locations. The model exhibits an average relative error of 12.12% in temperature prediction, a mean absolute error of 0.87 m for visibility, a mean absolute error of 3.49 ppm for CO concentration, and a mean absolute error of 16.78 Pa for fire wind pressure. Additionally, the mean relative error in density is 2.9%. These predictions serve as crucial references for mine fire emergency decision-making.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。