Progress in Additive Manufacturing of High-Entropy Alloys.

阅读:3
作者:Chen, Bin
High-entropy alloys (HEAs) have drawn substantial attention on account of their outstanding properties. Additive manufacturing (AM), which has emerged as a successful approach for fabricating metallic materials, allows for the production of complex components based on three-dimensional (3D) computer-aided design (CAD) models. This paper reviews the advancements in the AM of HEAs, encompassing a variety of AM techniques, including selective laser melting (SLM), selective laser sintering (SLS), selective electron beam melting (SEBM), directed energy deposition (DED), binder jetting (BJT), direct ink writing (DIW), and additive friction stir deposition (AFSD). Additionally, the study discusses the powders and wires utilized in AM, the post-processing of AM-processed HEAs, as well as the mechanical and corrosion properties of these alloys. The unique ultra-fine and non-equilibrium microstructures achieved through AM result in superior mechanical properties of HEAs, like improved strength and ductility. However, research regarding certain aspects of HEA AM, such as fatigue properties and creep deformation behavior, is still relatively scarce. Future research should focus on overcoming the existing limitations and exploring the potential of HEAs in various applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。