The Kimberley Process Certification Scheme (KPCS) was established in 2000 as a means of controlling the flow of conflict diamonds, mostly, from the African continent. In 2013, the KPCS imposed an embargo on diamonds from the Central African Republic (CAR). Since then the embargo has been lifted in certain prefectures of the country, however, smuggling is suspected from non-compliant areas. Three parcels of diamonds suspected to have mining origins in the CAR, were analysed. These diamonds were investigated for their morphological and chemical characteristics, to establish a diamond fingerprint and to determine if these diamonds had the same fingerprint as previously analysed diamonds from CAR or the Democratic Republic of the Congo (DRC). The analyses of these diamonds were included in the already established diamond database of rough diamonds from the African continent. The morphological characteristics identified included the mass (ct), colour, surface coatings, dominant, secondary and tertiary form, shape, breakage, inclusions, abrasion and surface features that are specific to octahedral, dodecahedral and cubic shapes. The morphological characteristics determined from the diamonds revealed that morphology alone cannot be used as a discriminatory method for diamond fingerprinting. Fourier transform infrared spectroscopy (FTIR) identified the nitrogen concentration and aggregation state of that N. This allowed for the typing of the diamonds as Type I (containing N) and Type II (containing no measureable N). The concentration of N in the three parcels is less than 600 ppm. Further classification of Type I diamonds was performed according to the N aggregation state as single, double or four-fold. The vast majority of diamonds show a combination of nitrogen aggregation states while few were classified as Type II. Fourier transform IR showed no discernible trends between the current study and the established database. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used as a means of determining the trace element concentrations of (69)Ga, (88)Sr, (89)Y, (90)Zr, (93)Nb, (133)Cs, (137)Ba, (139)La, (140)Ce, (141)Pr, (146)Nd, (147)Sm, (153)Eu, (157)Gd, (159)Tb, (163)Dy, (165)Ho, (166)Er, (169)Tm, (172)Yb, (175)Lu, (178)Hf, (181)Ta, (232)Th and (238)U. Laser ablation ICP-MS determined that not all elements produce statistically viable data, however, the data could still be used to discern trace element differences and trends among the parcels. In the current set of diamonds, laser ablation ICP-MS data for parcels A and B showed an excellent agreement with each other as well as those from diamonds previously analysed from CAR. None of the three parcels showed any similarity to data from Bria River or the DRC. It is concluded that the diamonds from parcels A and B are very likely to have mining origins in the same area in the CAR, whereas parcel C is distinct and of possible mixed origin.
Diamond fingerprinting for source discrimination using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and Fourier transform infrared spectrometry (FTIR).
阅读:2
作者:Brill Susan, Lilimu Ndamulelo, Chetty Deshenthree
期刊: | Heliyon | 影响因子: | 3.600 |
时间: | 2020 | 起止号: | 2020 Dec 1; 6(12):e05592 |
doi: | 10.1016/j.heliyon.2020.e05592 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。