To get a better heat transmission capacity of ordinary fluids, new hybrid nanofluids (HNFs) with a considerably greater exponent heat than nanofluids (NFs) are being used. HNFs, which have a greater heat exponent than NFs, are being applied to increase the HT capacities of regular fluids. Two-element nanoparticles mixed in a base fluid make up HNFs. This research investigates the flow and HT features of HNF across a slick surface. As a result, the geometric model is explained by employing symmetry. The technique includes nanoparticles shape factor, Magnetohydrodynamics (MHD), porous media, Cattaneo-Christov, and thermal radiative heat flux effects. The governing equations are numerically solved by consuming a method known as the Galerkin finite element method (FEM). In this study, H(2)O-water was utilized as an ironic, viscous improper fluid, and HNF was investigated. Copper (Co) and Titanium Alloy (Ti(6)Al(4)V) nanoparticles are found in this fluid. The HT level of such a fluid (Ti(6)Al(4)V-Co/H(2)O) has steadily increased in comparison to ordinary Co-H(2)O NFs, which is a significant discovery from this work. The inclusion of nanoparticles aids in the stabilization of a nanofluid flowing and maintains the symmetry of the flow form. The thermal conductivity is highest in the boundary-lamina-shaped layer and lowest in sphere-shaped nanoparticles. A system's entropy increases by three characteristics: their ratio by fractional size, their radiated qualities, and their heat conductivity modifications. The primary applications of this examination are the biological and medical implementations like dental and orthopedic implantable devices, as well as other devices such as screws and plates because they possess a favorable set of characteristics such as good biomaterials, corrosion resistance and wear, and great mechanical characteristics.
Irreversibility analysis of electromagnetic hybrid nanofluid for Cattaneo-Christov heat flux model using finite element approach.
阅读:2
作者:Qureshi, Muhammad, Amer
期刊: | Scientific Reports | 影响因子: | 3.900 |
时间: | 2023 | 起止号: | 2023 Mar 15; 13(1):4288 |
doi: | 10.1038/s41598-023-31445-7 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。