The lateral membrane organization and phase behavior of the binary lipid mixture DMPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine) - DSPC (1,2-distearoyl-sn-glycero-3-phosphatidylcholine) without and with incorporated gramicidin D (GD) as a model biomembrane polypeptide was studied by small-angle neutron scattering, Fourier-transform infrared spectroscopy, and by two-photon excitation fluorescence microscopy on giant unilamellar vesicles. The small-angle neutron scattering method allows the detection of concentration fluctuations in the range from 1 to 200 nm. Fluorescence microscopy was used for direct visualization of the lateral lipid organization and domain shapes on a micrometer length scale including information of the lipid phase state. In the fluid-gel coexistence region of the pure binary lipid system, large-scale concentration fluctuations appear. Infrared spectral parameters were used to determine the peptide conformation adopted in the different lipid phases. The data show that the structure of the temperature-dependent lipid phases is significantly altered by the insertion of 2 to 5 mol% GD. At temperatures corresponding to the gel-fluid phase coexistence region the concentration fluctuations drastically decrease, and we observe domains in the giant unilamellar vesicles, which mainly disappear by the incorporation of 2 to 5 mol% GD. Further, the lipid matrix has the ability to modulate the conformation of the inserted polypeptide. The balance between double-helical and helical dimer structures of GD depends on the phospholipid chain length and phase state. A large hydrophobic mismatch, such as in gel phase one-component DSPC bilayers, leads to an increase in population of double-helical structures. Using an effective molecular sorting mechanism, a large hydrophobic mismatch can be avoided in the DMPC-DSPC lipid mixture, which leads to significant changes in the heterogeneous lipid structure and in polypeptide conformation.
Modulation of concentration fluctuations in phase-separated lipid membranes by polypeptide insertion.
阅读:2
作者:Fahsel S, Pospiech E-M, Zein M, Hazlet T L, Gratton E, Winter Roland
期刊: | Biophysical Journal | 影响因子: | 3.100 |
时间: | 2002 | 起止号: | 2002 Jul;83(1):334-44 |
doi: | 10.1016/S0006-3495(02)75173-4 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。