Comparing Gold-Standard Sanger Sequencing with Two Next-Generation Sequencing Platforms of HIV-1 gp160 Single Genome Amplicons.

比较 HIV-1 gp160 单基因组扩增子的金标准 Sanger 测序与两种下一代测序平台

阅读:13
作者:Nolan David J, DaRoza Jonathan, Brody Robin, Ganta Krishna, Luzuriaga Katherine, Huston Chris, Rosenthal Simon, Lamers Susanna L, Rose Rebecca
Our goal was to assess the accuracy of next generation sequencing (NGS) compared with Sanger. We performed single genome amplification (SGA) of HIV-1 gp160 on extracted tissue DNA from two HIV+ individuals. Amplicons (n = 30) were sequenced with Sanger or reamplified with barcoded primers and pooled before sequencing using Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PB). For each amplicon, a consensus sequence for NGS reads was obtained by (1) mapping reads to the Sanger sequence when available ("reference-based") or (2) mapping reads to a "pseudo-reference" sequence, i.e., a consensus sequence of a subset of NGS reads ("reference-free"). PB reads were clustered based on genetic similarity. A Sanger consensus sequence was obtained for 23/30 amplicons, for which all NGS consensus sequences were identical (n = 9) or nearly identical (n = 14) compared with Sanger. For the nine mismatches between Sanger/NGS, the nucleotide in the NGS sequence matched all other sequences from that patient. Of the 7/30 amplicons without a Sanger sequence, NGS sequences had ≥35 ambiguous calls in five amplicons and 0 ambiguities in two amplicons. Analysis of the electropherograms showed failure of a single sequencing primer for the latter two amplicons (consistent with a single template) and overlapping peaks for the other five (consistent with multiple templates). Clustering results closely followed the Sanger/NGS consensus results, where amplicons derived from a single template also had a single cluster and vice versa (with one exception, which could be the result of barcode misidentification). Representative sequences from the clusters contained 2-13 differences compared with Sanger/NGS. In summary, we show that both ONT and PB can produce amplicon consensus sequences with similar or higher accuracy compared with Sanger and, importantly, without the need for a known reference sequence. Clustering could be useful in some circumstances to predict or confirm the presence of multiple starting templates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。