Characterization of a novel cell line established from mice gastrointestinal stromal model by chemical induction.

通过化学诱导从小鼠胃肠道基质模型中建立的新型细胞系的特性分析

阅读:10
作者:Zhao Zhan, Qiu Shenghui, Zhang Xiangwei, Liu Shijin, Wang Lu, Guan Hanyang, He Jiashuai, Hu Yangzhi, Li Xiaobo, Luo Simin, Chen Zuyang, Mo Tianmu, Zhang Yiran, Zhao Xiaoxu, Pan Yunlong, Ding Hui, Cao Jie, Pan Jinghua
BACKGROUND: Gastrointestinal stromal tumors (GISTs) are a type of tumor that originates from gastrointestinal mesenchymal tissue. Although several somatic or germline mutation GIST mice were established, however, there is still a lack of an authentic mice GIST cell lines for further experimental study. METHODS: We developed a chemically induced C57BL/6 J GIST model using 3- methylcholanthrene. Tumor characteristics were confirmed through histology and IHC. Primary cells were isolated to establish the mGSTc01 cell line, and molecular profiling was conducted. Additionally, we established GIST model in immunocompetent mice to evaluate their sensitivity to imatinib. RESULTS: Our study successfully developed a chemically induced murine GIST model, characterized by positive staining of c-kit and DOG-1. The mGSTc01 monoclonal cell line exhibited slender morphology and expressed the c-kit marker, Whole exome sequencing uncovered mutations of Lamb1, MMP9, and c-kit in GIST cells and provided a detailed picture of the entire genome's copy number variations. RNA sequencing indicated genes associated with cell adhesion and focal adhesion were enriched in mGSTc01 cells. The mGSTc01 cells demonstrated obvious malignant behaviors, notably elevated migration, adhesion, and proliferation. In immunocompetent mice, subcutaneous xenografts not only reserved the aggressive phenotype but also displayed a response to imatinib, underscoring the model's applicability for advancing therapeutic research. CONCLUSION: We firstly established a mGSTc01 cell line derived from C57BL/6 J mice GIST tumor offers, which closely mimicking human disease characteristics. It is a potent platform for investigating tumor microenvironment of GIST in mice model, and provides a novel way for new therapeutic discoveries in GIST.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。