Characterization of a novel cell line established from mice gastrointestinal stromal model by chemical induction.

阅读:2
作者:Zhao Zhan, Qiu Shenghui, Zhang Xiangwei, Liu Shijin, Wang Lu, Guan Hanyang, He Jiashuai, Hu Yangzhi, Li Xiaobo, Luo Simin, Chen Zuyang, Mo Tianmu, Zhang Yiran, Zhao Xiaoxu, Pan Yunlong, Ding Hui, Cao Jie, Pan Jinghua
BACKGROUND: Gastrointestinal stromal tumors (GISTs) are a type of tumor that originates from gastrointestinal mesenchymal tissue. Although several somatic or germline mutation GIST mice were established, however, there is still a lack of an authentic mice GIST cell lines for further experimental study. METHODS: We developed a chemically induced C57BL/6 J GIST model using 3- methylcholanthrene. Tumor characteristics were confirmed through histology and IHC. Primary cells were isolated to establish the mGSTc01 cell line, and molecular profiling was conducted. Additionally, we established GIST model in immunocompetent mice to evaluate their sensitivity to imatinib. RESULTS: Our study successfully developed a chemically induced murine GIST model, characterized by positive staining of c-kit and DOG-1. The mGSTc01 monoclonal cell line exhibited slender morphology and expressed the c-kit marker, Whole exome sequencing uncovered mutations of Lamb1, MMP9, and c-kit in GIST cells and provided a detailed picture of the entire genome's copy number variations. RNA sequencing indicated genes associated with cell adhesion and focal adhesion were enriched in mGSTc01 cells. The mGSTc01 cells demonstrated obvious malignant behaviors, notably elevated migration, adhesion, and proliferation. In immunocompetent mice, subcutaneous xenografts not only reserved the aggressive phenotype but also displayed a response to imatinib, underscoring the model's applicability for advancing therapeutic research. CONCLUSION: We firstly established a mGSTc01 cell line derived from C57BL/6 J mice GIST tumor offers, which closely mimicking human disease characteristics. It is a potent platform for investigating tumor microenvironment of GIST in mice model, and provides a novel way for new therapeutic discoveries in GIST.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。