The complement system is a pivotal component of innate immunity, extensively studied in vertebrates but also present in invertebrates. This study explores the existence of a terminal complement pathway in the tunicate Botryllus schlosseri, aiming to understand the evolutionary integration of innate and adaptive immunity. Through transcriptome analysis, we identified a novel transcript, BsITCCP, encoding a protein with both MACPF and LDLa domains-a structure resembling that of vertebrate C9 but with a simpler organization. Phylogenetic reconstruction positions BsITCCP between invertebrate perforins and vertebrate terminal complement proteins, suggesting an evolutionary link. Localization studies confirmed that bsitccp is transcribed in cytotoxic morula cells (MCs), which are also responsible for producing other complement components like BsC3, BsMBL, BsMASP, and BsBf. Functional assays demonstrated that bsitccp transcription is upregulated in response to nonself challenges and is dependent on BsC3 activity; inhibition of BsC3 led to a significant reduction in BsITCCP expression. Electron microscopy revealed that MCs form contact with perforated yeast cells, indicating a possible mechanism of cell lysis similar to the immunological synapse observed in vertebrates. These findings suggest that a C3-governed lytic complement pathway exists in B. schlosseri, challenging the assumption that a C5 ortholog is necessary for such a pathway. This work enhances our understanding of the evolution of the complement system and suggests that invertebrates possess a terminal complement complex capable of mediating cell lysis, regulated by C3. Future studies will focus on confirming the pore-forming ability of BsITCCP and its role in the immunological synapse.
Evidence of a Lytic Pathway in an Invertebrate Complement System: Identification of a Terminal Complement Complex Gene in a Colonial Tunicate and Its Evolutionary Implications.
阅读:2
作者:Ballarin Loriano, Peronato Anna, Malagoli Davide, Macor Paolo, Sacchi Sandro, Sales Gabriele, Franchi Nicola
期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
时间: | 2024 | 起止号: | 2024 Nov 8; 25(22):11995 |
doi: | 10.3390/ijms252211995 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。